skip to main content


Search for: All records

Creators/Authors contains: "Pardi, Melissa I."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The significant extinctions in Earth history have largely been unpredictable in terms of what species perish and what traits make species susceptible. The extinctions occurring during the late Pleistocene are unusual in this regard, because they were strongly size-selective and targeted exclusively large-bodied animals (i.e., megafauna, >1 ton) and disproportionately, large-bodied herbivores. Because these animals are also at particular risk today, the aftermath of the late Pleistocene extinctions can provide insights into how the loss or decline of contemporary large-bodied animals may influence ecosystems. Here, we review the ecological consequences of the late Pleistocene extinctions on major aspects of the environment, on communities and ecosystems, as well as on the diet, distribution and behavior of surviving mammals. We find the consequences of the loss of megafauna were pervasive and left legacies detectable in all parts of the Earth system. Furthermore, we find that the ecological roles that extinct and modern megafauna play in the Earth system are not replicated by smaller-bodied animals. Our review highlights the important perspectives that paleoecology can provide for modern conservation efforts. 
    more » « less
  2. Dietary variation within species has important ecological and evolutionary implications. While theoreticians have debated the consequences of trait variance (including dietary specialization), empirical studies have yet to examine intraspecific dietary variability across the globe and through time. Here, we use new and published serial sampled δ 13 C enamel values of herbivorous mammals from the Miocene to the present (318 individuals summarized, 4134 samples) to examine how dietary strategy (i.e. browser, mixed-feeder, grazer) affects individual isotopic variation. We find that almost all herbivores, regardless of dietary strategy, are composed of individual specialists. For example, Cormohipparion emsliei (Equidae) from the Pliocene of Florida (approx. 5 Ma) exhibits a δ 13 C enamel range of 13.4‰, but all individuals sampled have δ 13 C enamel ranges of less than or equal to 2‰ (mean = 1.1‰). Most notably, this pattern holds globally and through time, with almost all herbivorous mammal individuals exhibiting narrow δ 13 C enamel ranges (less than or equal to 3‰), demonstrating that individuals are specialized and less representative of their overall species' dietary breadth. Individual specialization probably reduces intraspecific competition, increases carrying capacities, and may have stabilizing effects on species and communities over time. Individual specialization among species with both narrow and broad dietary niches is common over space and time—a phenomenon not previously well recognized or documented empirically. 
    more » « less
  3. null (Ed.)
    Palaeoecological interpretations are based on our understanding of dietary and habitat preferences of fossil taxa. While morphology provides approximations of diets, stable isotope proxies provide insights into the realized diets of animals. We present a synthesis of the isotopic ecologies (δ13C from tooth enamel) of North American mammalian herbivores since approximately 7 Ma. We ask: (i) do morphological interpretations of dietary behaviour agree with stable isotope proxy data? (ii) are grazing taxa specialists, or is grazing a means to broaden the dietary niche? and (iii) how is dietary niche breadth attained in taxa at the local level? We demonstrate that while brachydont taxa are specialized as browsers, hypsodont taxa often have broader diets that included more browse consumption than previously anticipated. It has long been accepted that morphology imposes limits on the diet; this synthesis supports prior work that herbivores with ‘grazing’ adaptions, such as hypsodont teeth, have the ability to consume grass but are also able to eat other foods. Notably, localized dietary breadth of even generalist taxa can be narrow (approx. 30 to 60% of a taxon's overall breadth). This synthesis demonstrates that ‘grazing-adapted’ taxa are varied in their diets across space and time, and this flexibility may reduce competition among ancient herbivores. 
    more » « less